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The problem of controlling a linear system with bounded phase coordinates is considered ,
The paper is concerned primarily with the limiting process which leads from the solutions
of problems approximating the initial problem to the required solution. The approach em-
ployed is based on the interpretation of control problems as moment problems (e.g. see [1]
which contains a bibliography of the subject).

1. Formulation of the problem. Let us consider the controlled motion x (¢)
described by the differential Egq.

dx (t) / dt = Az + Bu + w () (1.1

Here x is the n-vector of the phase coordinates; u is the scalar controlling force; w (t) is
a continuous n-vector function (the specified disturbance); A and B are constant matrices
of the appropriate dimensions.

Problem 1. We are given the time interval to £t < T and the initial x (¢,)==x° and
final x (T) = x T states of the phase vector x. We are also given m functions fi (3 k= 1,...,
m < n) which are continuous on [to, T} and strictly positive (for ¢ > to). We are required to
choose from among the forces u(t) which bring system (1.1) from x° to x T in the time T — ¢
under the restrictions

| zx ()| << /i () (o<t T k=1,...,m) (1.2)

a control u°(t) for which
% [u°] = vrai max,|u°(t)| = min, % [u] = min, vrai max,| u (f)| 1.3)

(<t T)

We shall call the control u®(¢t) *“optimal’’.

2. Method of solution and the basic result. Let us partition the interval
tos t < T into N equal parts at the points

4 = t, + iAyt, Ayt = (T —t;)/ N (i=1,..., N)
and consider Problem 1, replacing restrictions (1.2) by the conditions
ka(ti)l<fk(ti) (k=1,....m; i=1,...,N) 2.1)

For brevity we shall refer to this problem as Problem 1. We propose to investigate ini-

tial Problem 1 by taking the limits (N » o) of the solutions of Problem 1,.

According to the solving procedure of [1], Problem 1,, can be reduced to a moment prob-
lem: from emong the functions uy (¢) satisfying the relations
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T
§h,[T, Tluy(v)dr=c, (s=1,....n) (2.2)

T
VBl slun (@) dr— 2y = ey || <h(t) (=1 N—tik=1,...,m)
te

we are required to find a function uN° (¢) such that
% [u®] == minx [u]
Here z,, are constant numbers; hl (s R 71 is the j-th component of the vector
Ht,x]=X[t,T1]B (@X[t v]/dt=AX[t. ], X [t, 1] = E)

and h, [¢, T) = O for T > ¢; the numbers ¢y and .., are, respectively, the k-th components
of the vectors
T

¢=aT— X T, tg)2°— \ X [T, T w(v)dr

i

p (2.3)
V= — X[, tg) e~ | X [t;, TJw(x)dv

&

We assume that system (1.1) is completely controllable [1]. The functions
h‘ [T, «l, hy, [t“ 1l (s=1,..,n k=1,...,m; i=1,..., N—1)

are then linearly independent, and problem (2.2), (2.3) is solvable. The solution is provided
by the function

uy (t) = vy, sign iy (t) (2.4)
m N-—1

hy (z) = ZANh (T,x]4 D) D) Linha (2, ©] Ant (2.5)
=] L=1 $=1

The numbers A.N", I“N“: VNO are the solution of the arbitrary extremum problem

vy =@y, 1)) = n;a‘x O (A, In) = max ‘—j— (2.6)
m N—} m N—1
S= anc,-{— 2 2 bavendn t — 21 3 fio(t) | haw | Bnt
sm=] h=11i=1 hx=] =)
m N-—1
Sl }_,A Nh T, T+ ) 2 bunhy [, 1] Ay t|de
> 8=] k=1 t=1
for
m N—
p [lN,lN]—Vl’N+ZZI,‘N<1 max; lednl<1 (2.7)
=1 La=l d=] ha=1

We note that by virtne of the above assnmpnons the denominator in (2.6) differs from
zero for all N, and that the number v, ° is positive,

Let us consider the sequence of purunons of the interval £, << T into N equal parts,
settingN=N_, N = 2N, (a. =1, 2,...).
We denote by l (c) e function (2.8)

ILN(t)':lkiN for ‘i—1<t<‘i (i=i,,,.,N-—i) l“v(t)Eo for ‘N—l<‘<T
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We can then rewrite relations (2.6) and (2.7) as

vy =0, @)= n:::x O(Ay, In(@®) = 2.9)
= max 7‘— {®1 [Ax, In (0)] + 01 (Ant) — @s [N (1)1 + 03 (Ant)}
T
7= 19 o, I 1 €1 + 00 (A1) | ¢
for . (2.10)
B 1w v (01 = Zdde+ 3 8w 0d <1, veaimax, Rl ()] <1
= ‘=1 3, An=l
Here ‘
n m T
®= Dhwes+ e ()l (t)dt (2.11)
gea] klnlh
n m T
@2 = NAwt, [T, T]+ ) ym(‘)hx [¢, v} dt (2.12)
L] A=y 3
m {‘ '
Py = Z;\fk(t)”uv(t)fdt (2.13)
Lem) fe

The symbols o, (A y2) in (2.9) represent quantities which tend to zero as Ayt - 0, and
m T

lov(ant) [ = | T \ex(t) —cun () Ly (1) dt | <Hibnt

ka] e

N (t) = Ck‘ for ‘i‘l <t < l"

m T
los (Ant)] = IZ S(hx [t, el — hn [t, t]) iy (‘)dtl< kAnt

A==l
hiw = by (2, 7] for 4, <ty

m T
los(ANt) | << D) >1<fk (8) — frw () Lin(2) | dt

k=1 »
En@=Fh(t) for t <ty (0 < kj== const < o0}
where ¢ , (s)-th component of the vector function is
3
c®)=—XI¢, to1x°--§X (¢, sjw(v)de

The ordered system
B = (v IV} = ins - - o daws B (8- - - Lo ()

is en element of set (2.10) of the Hilbert space H {£} with the metric p[£]=p[A, ()]
From the property of weak compactness [2] of a sphere in H{£} we infer that the sequence
of quantities £° contains a weakly convergent sequence E={A%, W =1 Pees A %
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12y 1 °(&)! with a weak limit, where p[£°] < 1; moreover, by virtue of the second con-
dmon of (2.10). vrai max,|1,°(¢)]| < 1. (We shall retain our symbol { £ °} for this subse-
quence.) We note, fnnher, th.t the fanctions A_[7, 71, ¢, {8) from (2.5 to (2.12) are comtin-
uous. The operations ¢, (2.11) and ¢ , (2.12) hor a fixed 7) are therefore linear functions
aver H{ &1,
Thus,

Mm@yl =alF)  lime iy 1] =0 1 (2.14)

Condition (2.14) for ¢b , ensures existence of the limit

T
;ggg f‘?:[GN,TI+03(AN‘)!dT—$f‘¥’:[§° t]jds

Now let us show that

Iim q);[l:,\, O] =93 [°(8)) (2.15)

We note that the sequence 12 @) = {8 (©)yeney 10" ()} converges weakly to the quan-
tity I°G) = { 1 °(0),..., i °(¢)} in the space L_ of m-vector functions. Recalling that the quan-
tity ¢>3[1 (¢)] is the norm of the element I, (8). we obtain the inequality [9]

liminfs (g (1)) > @a[I°(f)] a8 N—oo (2.16)

We assume that the quantity

R (1) = @ [E% 7] = 2 Mk, (T, ] + 3] S L hlt, vldt (2.47)
k=1<
is not identically equal to zero on a set of zero measure from [¢_, T]. It is clear from this
that the limit lim inf @\ %, 1,°()) as N » oc does, in fact, exist, and that the quantity
D (A%, 1°k)) has meaning. Let us show that the relation

o@R°, P hn‘xv inf @Ay, Iy (1)
—00
is valid, thus verifying both the inequality
lim Sup s Uy 1< s [ (1)]

and (by virtue of (2.16)) condition (2.15).
Let us assume the contrary. Then

OO, (@) —liminf O (hy, [y(1)>0>0

On the basis of the vector function l°(c) which is generally not continuous, we can con-
struct the continuous vector function °(¢),,, each of whose components differs from the cor-
responding component of the function /°{(t) only on some set of measure smaller than o, and
such that

@ @°, P(t))— DA, ° ()] <a/2 (2.18)
The latter is possible by virtue of the Luzin theorem [3]. The functions I °(t) are boun-
ded: max 4|1, 2()] < 1. For the functions {,°(:), we have the relations
T
Yex @ i dt = lim 2 e (8) 0 (2

te

T
§ B8, 31 5 (00t = lim 2} he (s, <] 1 (Do

0 fenf (t)
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T N
V@15 (00120 = Yim D 1 (1]
i, N0 40

The sums in the right sides of (2.18) are the integral Riemann sums corresponding to the
continuous vector function I, °(t),. Substituting into the functional P\, ) from (2.6),

on the one hand, the quantities
M=, L0 P =] ey - o bp(tds} (=1, N)
and, on the other, the solation
A ={MNy - A {ivs k=1, .. ,myi=1,. .., N —1}
of problem (2.6), (2.7), we obtain the inequality
QR Py <<DO(RAy, L) (2.19)

Let us take the limit (¥ -» o) in both sides of the above inequality. We note that the
quantity 8\, 1,°) in this inequality can be represented (with allowance for (2.8)) in the
form PR, INO(S) {see (2.9) to (2.13)), Then, recalling the weak convergence of {)\N‘), £N°
(¢} 10 {AS, 1°(1)], and also relations (2.18) and (2.19), we obtain the inequality

G2, PE)Uminf ® (g, 15() + /2

This inequality clearly contradicts our assamption.

Thus, there exists a subsequence {fN"I of quantities which ensures simultaneous ful-
fillment of conditions (2.14) and (2.15). Taking the limit, we obtain the guantity &%= {A°,
1°()}. Let us consider the subsequence !VNO} of numbers corresponding to this subsequence
{£,°]. Relations (2.6) imply the inequality v, J2vyCforallN, >N .

The subsequence {r °} is therefore monotonous; it is bounded and converges to the fi-

nite limit v°, Taking the limit (V + 00 ) in (2.9) and (2.10), we obtain Eq.

T -
V=YE) = @mE e o) (|leE ) T @20

Assuming the contrary and making use of representations (2.18) and (2.19), we conclude
that the following condition holds:

T -1
¥ = ¥ (F)=max ()= max (¢, (] —as (L)) (Vleutt w11dv) ~ @220)

to

for
plEl=plh OIS, vraixﬁ'ix,'zllk(t)lgi
A

The quantity £%={A%, 1°} thus turns out to be an extremal element of arbitrary extremum
problem (2.21), which is the limiting case for problem (2.6), (2.7}.

Let us show that from the sequence of optimal controls u ,°(¢) (2.4) for Problems 1, we
can isolate a subsequence having the weak limit » ®(¢), and that his limit u°(¢) is, in fact,
the optimal control for Problem 1. (Under the indicated conditions the sequence of trajec-
tories x1¢; “NO] converges uniformly to the optimal trajectory =t u°1)

In fact, the quantities uy°(t) = v\° sign hy°(¢) are bounded in the metric of L, and
therefore contain the subsequence {uN°} which converges weakly in L, to some function
u (), The function 8 °(s) clearly satisfies the conditions of Problem 1 (see {2.2) and (2.3)).
Here we have [2]: vrai maxtf u®()| £ v° We shall show that vrai max |u°@®)|=v°. In
fact, assuming that vrai max, | u®(¢)| =y <v°, we can find a number N such that <v,°=
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= vrai max, Jupy°(®)] <v°. The latter contradicts the optimality of the control u,°, By simi-
lar reasoning we can show that the control u°(t) is optimal.

Let us describe briefly the structare of the function u°(t). First, we exclude the case
where the neighborhood of each point of the set [‘0' T}, where 5°(t) = 0, can contain points
from [‘o' T1, where 4°() £ 0, We begin by considering the set e C [‘o' T1, where A%(s)> 0.
The set e is open.

Let us choose a sequence {yki of positive numbers y, which converges to zero, By e,
we denote the set ¢, Ce, where 5°(t) 2 y,. We choose a number k = j such that the set e
is nonempty. The set ¢, is closed. Making use of (2.8), we represent the functions hy°{s)
(2.5) in the form hN°(‘T$ = qu[fN°; Tl+o (As,t). These functions are generally not contin-
vous. On the other hand, the functions ¢2CEN ; 71 (2.12) are continuous and (by virtue of
condition (2.10) and the properties of the quantities h'[T, 7], hk[t, 7)) form a set compact
[2) in the space C. Hence, there exists a subsequence {£4°) of quantities (we use our ori-
ginal symbol to denote this subsequence) on which the convergence of the functions ¢ 2[ f~°;
7] to the function A°(7) (2.17) is uniform.

Choosing the numbers N, and N, in such a way that qu[fwg 12 2y, /3 for N> N, and
0,(A )<y, /3 for N> N,, we see that hy°(e) 2 ¥, /8 for N = N ()= max N, N,). In accor-
dance with (2.4), we find that the subsequence of controls u,°(t) converges on the set e to
the constant v°,

It follows from this that the weak limit #°(¢) is also equal to v° on the set . Reasoning
in this way for each k > j, we see that u®{t) = v° on each of the corresponding sets ¢, Fur-
ther, recalling that ¢ = e, , we find that %@ =v° it %) > 0. Similarly, we can show
that 4 °(¢) = ~v° if A°(t) <0, Thus, we conclude that u®{¢) = v° sign h°(t) it A°(t) £ 0 and
that u °(¢) is the weak limit of the subsequence of functions uy°(t) if h°(¢) = 0,

The above implies that the optimal control u ®(¢) satisfies the following maximum relation:

R (1) u® () = maxy h° (Du () for vraimax,[u(f)]<v° (2.22)

Expression (2.22) for Problem 1 is analogous to the Pontriagia maximum principle and is
similar to the necessary conditions of optimslity of the control 4 © obtained for problems of
this type in {5}.

We note, however, that the limiting process under consideration establishes the exis-
tence of the solution of the problem, provides additional condition (2,21) which defines the
function 4 °(¢), and yields the value of v which serves as an estimate of the optimal cen-
trol 4, Finally (and this is the most important result of our investigation), the limiting pro=
cess enables us to find the optimal control in those time intervals where 4°(t) = 0,

In fact, Condition (2.22) does not tell us how to choose the control 4 °{t) when A°%{¢) = 0.

We noted above that the optimal control u °{¢t) can be sought in this case as the weak
limit of a subsequence of functions u 5 (¢).

However, actual computation of u °(¢) by this method is made difficult by the fact that
the control uy®{¢) in time intervals when A °(t) = O takes the form of discontinuous controls
with the number of switchings increasing as N + s, This leads to a so-called **sliding
state’’ in system (1.1). In order to circumvent this difficult at least partially, let us consi-
der the following method of constructing 4 °(t) in time intervals when A°{t) = 0. Let ¢ be an
arbitrary point in one such interval, and let us consider the functions

€
ul (§) = -lim uly (8) =lim %_ S ujy (¢ +0)d9 (2.23)
0

Functions (2.23) are continuous [2]. The essence of operation (2.23) lies in the fact
that the subsequence {u ,,°} of generally discontinuous controls " (2.4) is replaced here
by the sequence {u.k°} (€, + 0 as k + o) average (continuous) controls u,° (2,23), so that
we can speak of a weak limit of {ug,?(t)! which we shall call the *“‘regularized optimal con-
trol”’. We shall merely verify here that {u ,;’(:H yields the same trajectory as the control
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#°(). Constructing the differences |, [¢; u,] '~ %,[¢, u°]| and recalling the weak conver-

goence of{uuoi to u°, we obtain
t4-8

A {om [ § mtn— o1ty oo —
t4-9 *

[z.[t, u':]—z.[t, u®]|=

Ll T e 7

t
1
— fhete, e o anl} a0 | < -  thotsn— 01—l a4
b

t
+i5[h.(l, m— 81—y [4, nllu* () dn |+

L)
+ S[h. (t, 1 —8—h {2, n]] v° () dn”d0<e
/]

Thus, we find that the condition

limz, [t, ug ] =2z, [t, u°] (s=1,...,n)
-+0

is fulfilled for all t; <t < T.

The foregoing is summarized by the following.

Theorem. The control u®(t) obtained as the weak or regularized limit of the optimal
controls u,° in Problems 1, is optimal for Problem 1. It satisfies maximum principle (2.22)
where the minimal function 4 °{(t) and the number v° are the solution of arbitrary extremum
problem (2.21), which is the limiting case of problem (2.6), (2.7). In those intervals where
hy () # O the control u°(t) = v° sign A °(t). In those intervals where °(¢) = 0 the control
8°(¢) can be found by taking the regularized limit of the continuous functions u,°(z) (2.23)
as £+ 0,

In the same way we can solve the problem of time-optimal operation with specified res-
trictions on the control (%[u] £ /) and on the phase coordinates (1.2). The difference lies
in the fact that in problems (2.6), (2.7) and (2.21) the unknown is the time T, while the con-
stant ¥ is given (*).

Notes. l. Egs. (2.23) represent just one of the methods of constructing the control
u°(@) for A°(t) = 0. Other methods of constructing u °(¢) in such cases will be investigated
in a later paper.

‘2. The above arguments remain valid for Problem 1 with norms %[u] of forms other than
% [u] = vrai max,|u (t)e . They can be generalized automatically for the case of a convex
positive functional s [u] and for a nonsteady-state System (1.1) with the vector control u.

3. The above approach to the solution of Problem 1 also covers problems on the minimum
in a given time interval t) < ¢ < T of the maximal deviation of the phase coordinates of Sys-
tem (1.1) under the specified restriction x[u] <v.

As an elementary example (which nevertheless affords a clear notion of all the basic
operations at the basis of the described method, and which can readily be solved on the
basis of simple mechanical considerations), let us consider the motion ™ = u of a material
point which must be transferred by means of the force u ({u| < 1) in the minimal time T from
the position {x (0) = 0, x°(0) = 0} to the position { x (T} = 1, (T = 0} under the restriction
| ()] € f(8) = t/2. Problem (2.21) reduces to that of finding

-1
dT) } =1

T T
max, {(A, - So.s: oy d:) (S
0 0

T
(T—t)}q-}-hg-{—SI(t)dz

*) A a]rticular case of this problem (without discussion of the case 4 °(t) = 0) is considered
in {6].
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for
T
542VY6
l.xi+h!.§.~31(t)dt=r, HOIESA ,=__'i‘_3__y:
[}

(The arguments in the first half of the present paper remain valid even if the restrictions
in (2.7) are not unitary.)
Solution of this problem yields the values

A =1, A =-—Y8/3, T=V6
r)=—1 for 0t <2 V6/3, 1°(M)=0 for 2V6/3<t< V8
From (2.17) we find that
=0 for 02V 6/3, he@)=—t+2V8Y3 for 2VE/3<t<YE
According to our Theorem, u°(t) = — 1 for 2\/3-/35 t < \/-6-. We construct the functions

5 2(¢e) (2.23) for determining u ®(¢) for 0< ¢ < 2/6/3. To this end, solving Problem 1, with
the interval A vt = 21/6/3N, we find that when 0< ¢ < 21/6/3,

u®(t)=1 for li—1<t<"(r+ ANI 34
u(t)=1 for 'i—-1+3AN‘/4<‘<ti+ANl

(As we see, the controls u,°(¢) produce a ‘‘sliding state’’.) The regularized functions ul (@)
(2.23) are of the form u°= 1/2 (0< £ < 2¢/6/3 — £) and yield the regularized sequence

{u °} of controls which converges (already in the usual sense in our example) to the function
u®(t) = 1/2, which is the weak limit of the quantities u »°(t). Finally,

ut(t) =1, for 0t<2V6/3
and u® () = —1 for 2V6/3t << V6.

The problem considered in the present paper was formulated in N.N. Krasovskii's sem~
inar at Ural University, The authors are grateful to Prof. Krasovskii for his valuable sugges-
tions.
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