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The problem of controlling a linear system with bounded phase coordinates is considered L 

The paper is concerned primarily with the limiting process which leads from the sblutions 
of problems approximating the initial problem to the required solution. Tbe approach em- 
ployed is based on the interpretation of control problems as moment problems (e.g. see [I] 
which contains a bibliography of the subject). 

1. Formulation of the problem. Let us consider the controlled motion z (t) 
described by the differential Eq. 

dz (t) / dt = As + Bu + w (t) (1.1) 
Here x is the n-vector of the phase coordinates; u is the scalar controlling force; w(t) is 

a continuous n-vector function (the specified disturbance); A and B are constant matrices 
of the appropriate dimensions. 

P r o b 1 e m 1. We are given the time interval to 5 t 5 T and the initial x (L I= x0 and 
final z(T) = zT states of the phase vector Z. We are also given m functions fk(t (k = I,..., 1 
m -< n 1 which are continuous on [I,, T] and strictly positive (for t > t,). We are required to 
choose from among the forces u(r) which bring system (1.1) from z” to z T in the time T - Lo 
under the restrictions 

1 xk ct> 1 < fk tt) (t,, < t -< T; k = 1, . . . , m) (1.2) 

a control u’(t) for which 

x [u”] = vrai maxf 1 u’(t) 1 = min,r. [u] = min,vrai maxt 1 u (t) 1 (i .3) 

(to bl -G u 
We shall call the control uo(r) “optimal”. 

2. Method of solution and the basic result. Let us partition the interval 

to-< I -< T into N equal parts at the points 

Lo = to + iA,f, A,t = (2’ - t,) /N (i = I, . . .( N) 

and consider Problem 1, replacing restrictions (1.2) by the conditions 

1 xk tti) 1 < fk cti) 
(k=1,..., m; i=i ,... ,N) (2.1) 

For brevity we shall refer to this problem as Problem 1, We propose to investigate ini- 

tial Problem 1 by taking the limits (N + 00) of the solutions of Problem 1, 

According to the solving procedure of [1] , Problem 1, can be reduced to a moment prob- 

lem: from among the functions uN (t) satisfying the relations 
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T 

r! h,[T, z] u&)dr = c, (8=l,...,n) (2.2) 

T 

s 
’ h, [t,, ‘c] I(N (r) df - 2~1 = cki, 1 zki I< fk (tj) (i = 1, . . . , ,” - 1; k = f 9 . . . 9 m) 

tr 

we are required to find a function u,,,O(t) such that 

y. [u”] == min,x [u] 
Here zk, are constant numbers; hj fr, ~1 is the j-th component of the vector 

H It, 71 =X[t,r]B (dX[1,r]/df=AX(r,r], _Y[f,L]=E) 

and h, [t, 71 s 0 for T >_r; the nombers ck and _k, are, respectively, the k-th components 

of the vectors 
T 

C=ZT-X[[T, t(JA-- ‘X[T,t]w(+lr 
s 
15 

p 
! ! 

==--x[ti, t&P-- \ x[ti,z]w(T)dr 

i, 

(2.3) 

We assume that system (1.1) is completely controllable [I]. The functions 

h, IT, ~1, hh [tr, ~1 (S=l,..., n; k=l,..., m; i=i ,..., N-1) 

are then linearly independent, and problem (2.2). (2.3) is solvable. The solution is provided 
by the function 

fJ& (t) = vb sign hK (t) (2.4) 

h:y (T) = i h&l, IT, r] + 5 Nil&&k [ti, Z] A.,t (2.5) 
J==l I.=1 1=1 

The numbers AmNo, &,$ vNo are the solution of the arbitrary extremum problem 

for 

n m N-I m N--l 

(2.6) 

pz [AN, lN] ‘= i k:N $ 5 Nil fftN < 1 maxi i [ &.iN I< 1 (2.7) 
-=l I.=1 i=l L,==l 

We note that by virtue of the above assumptions the denominator in (2.6) differ0 from 
zero for all N, and that the number vNo is positive. 

Let us consider the sequence of partitions of the interval to S t S T into N equal parta, 

setting N a N& N,= 2Na_I (a = 1, 2.A. 
We denote by I, (L) the function (2.8) 

&N (t) = &IN for $_.t < t < ti (i = 1. . . . I N - 1) lI;N (t) S 0 for t&l< 1 < T 
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We can then rewrite relations (2.6) aad (2.7) as 

(2.91 

(2.11) 

(2.12) 

(2.13) 

The symbols o, (A,+) in (2.9) represent quantities which tend to zero aa ANt + 0, aad 

101 (ANY) t = 1 ai i(+ W 

= 4 

- 6.N (h &N (t) dt I< k&t 

C&N (t) = cki for ‘i-1 <t < G, 

103 (A~f)i = 15 i(h, ft. T] - hlriv ft. q) &N (tjdt I< k&t 
1=x f 

h&N C- h/-N [tip r] for ti-l<tgft 

l”JtANt)l < 5 Sl(fr(L)_-fiN(f))IEn(t)Idl 
k=l . 

fk~ (0 = fk (4) for t~-~ Ct Q 4 @<kj = const < 00) 

where c k(t)& component of the vector function is 
t 

c w =--X[t, t,,]a?-- X[t,r]w(~)dr 
! . 

The ordered system 

& = {& & (t)) = (&, . . ., A&; & (& . . . &k @)I 

is m clam-t of met (2.10) of tbe Hilbert mpace H(t) with h metric pffl= p[ht l (t% 

From &e property of weak compactness 121 of a sphere ia H&r we infer that the seqoeaa 
of qamtitfes tNo contains a weakly convergent ssqnaaca k= f x0. Z’(t)] = 4 A ~v-e Ano; 
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Ilob)*..., Zm”(t)j with a weal: limit, where p[k] 1s 1; moreover, by virtue of the Mcond con- 

dition of (2.10). vrai maxill,’ 5 1. (We ahail retain our symbol 1 t “1 for this sobee- 
quenee.) We note, further, that the frmctions li f T, 71, c&) ~NBI (2.4 to (2.121 are r~arin- 
uoua. Tbe operations #t (2.11) and 4 I (2.12)tf or a fixed 7) are therefore &tear functions 
over H { t1. 

ThU8, 

lim ck t&J = ‘pl El, 
N-m 

limcpt fE$ %I = qt IF; 1) 
Ne 

(2.14) 

Condition (2.14) for q% x enauras existence of the limit 

Now let us show that 

lim 9)3 Il;, WI = TVS Ilo (01 
N-.W 

(2.15) 

We note that the sequence 1,0(t) = {fm”(tI,..., ImNo(:)f coavergeiz weahfy to the quan- 
city IO(t) = 11 O(t),..., 
tity #I,[& Ct# is 

1 Oft)] in the space L of m-vector functiona. Recalling that the qnan- 
tb e nok of the element I,&). we obtain the inequality [2] 

lim i~f~(Z~(~)J >qkft*(t)] an N-+00 (2.16) 

We assume thet the quantity 

Ito (TI -‘ ‘pt [p; T] = i: J&V, ~1 + ; i f;(t)fi,[t, r]dr (2.17) 
84 k=ux T 

is not identically equal to zero on a set of zero measum from Ito, T]. It is clear from this 
that the limit lim inf cP(x,‘, 1N0(t)) aa N + 00 does, in fact, exist, and that tbe qaantfty 
@(ho, to(t)) haa meaning. Let us show thet the relation 

CD (Ao, P(t)) (g tim,Lf @ (Ai, 2; (t)) 

is valid, thus verifying both the inequality 

end (by virtue of (2.16)) condition (2.15). 
Let us aosume the contrary. Then 

On the basis of the vector function IO(t), which is generally not continuous, we can con- 
struct tbe continnone vector function i”(t),. each of whose components diffem from the cor- 
responding component of the function IO(t) only on some act of measure amaller than 4, and 
such that 

I Q, (C I” ($a) - @ (a09 1” (W I\< 6 / 2 (2.18) 

The latter is possible by virtue of the Luzin theorem [3]. The functions ‘h”(tb are hour 

ded: mex *] I ,Oft) I,< 1. For the functions 1 oft&,, we have the reletions 
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The sums in the right sides of (2.18) are the integral Riemann sums corresponding to the 
continuous vector function 1, ‘(t),. Substituting into the functional 9 (h,, 1 ,.,,I from (2.61, 
on the one hand, the quantities 

J.O = {“f, * * ‘3 ni>* l”ftiIo = (I; (bi)o, * f ., Ii (ti)a) (i = I, . * -9 Ni 

and, on the other, the solution 

AN0 = {A;,, . . ., A&}, {&,y; k = 1, . . .) m; i = 1, . ., N - 1) 

of problem (2.61, (2.71, we obtain the inequality 

@ (ho* I” (li)u) < @ (nR, ‘No) (2.19) 

Let us take the limit UV -+ = 1 in both sides of the above inequality. We note that the 

quantityQ,(A I ‘1 
form Qtf 

in this inequality can be represented (with allowance for (2.8)) in the 

xsl 
, f~(~) (see (2.9) to (2.13)1. Th en, recalling the weak convergence of {hNo, fNo 

(t)! to &I ,‘Z’(t)l, and also relations (2.18) and (2.191, we obtain the inequality 

CD (A”, I” (t)) < limNz’D (A,;, I,; (t)) + Q / 2 

This inequality clearly contradicts our assumption. 

Thus, there exists a subsequence f tNo) of q aantities which ensures simultaneous ful- 

fillment of conditions (2.14) and (2.15). Taking the limit, we obtain the quantity co= {x0, 

f’(r)). Let us consider the subsequence {Ye) f o numbers corresponding to this subsequence 

f eNot. Relations (2.6) imply the inequality ~~~‘2 ylvto for all Nz > Nr , 

The subsequence fv, “1 is therefore monotonous; it is bounded and converges to the fi- 

nite limit v”. Taking the limit Vv + 00) in (2.9) and (2.10), we obtain Eq. 

Assuming the contrary and making use of representations (2.18) and (2.19). we conclude 
that the following condition holds: 

The quantity to= {x0, f”) h t us t urns out to be an extremal element of arbitrary extremum 

problem f2.21), which is the limiting case for problem (2.6), (2.7). 
Let us show that from the sequence of optimal controls u,O(t) (2.4) for Problems 1, we 

csn isolate a subsequence having the weak limit u”(t), and that his limit uo(t) is, in fact, 

the optimal control for Problem 1. (Under the indicated conditions the sequence of trajec- 

tories x[L ; uNO] converge8 uniformly to the optimal trajectory rft; no].) 

In fact, the quantities u,O(t) = uNo sign hNo(t) are bounded in the metric of L, and 

therefore contain the subsequence {u,,,“) which converges weakly in Lz to some function 

n’(t). The function u O(t) clearly satisfies the conditions of Problem 1 (see (2.2) and (2.3)). 

Here we have (21: vrai max,/ uO(t)j IV O. We shall show that vrai max t 1 u O(t) 1 = v”. In 
fact, assuming that vrai max, 1 u”b)f = q< v”, we can find a number N such that q<vNo= 



The problem of control with bounded phars coordinates 193 

= vrai max# [uNo(t) 1 < v9 The latter contradicts the optimality of the control u,‘. By sfmC 

lar reasoning we can show that the control u’(r) is optimal. 
Let us describe briefly the structure of tha function u’(t), First, we exclude the case 

where the neighborhood of each point of the set [to, T], where h O(t) = 0, css contain points 

from [t,,, ?‘I, where ho(t) f 0. We begin by considering the set s C It,,, ‘d, where h’(t) > 0. 
The set s is open. 

Let ua choose a sequence { ykf of positive numbers yk which converges to zero. By eIr 

we denote the eet eh C e, where ho(t) 2yk. We choose a number b = j such that the set a, 

is nonempty. The set e is closed. Making use of (2.81, we represent the functions IrMoft) 

(2.5) in the form hN o(A=#2[(No; T + o (A t) TII se functions are. generally not contin- 1 
uous. On the other hand, the functions #2 & 

t d l I ( e ) 
; T 2.12 are continuous and (by virtue of 

condition (2.10) and the properties of the quantities h.[T, ~1, h,[t, ~1) form a set compact 

[2] in the space C. Hence, there exists a subsequence {&of of quantities (we use our ori- 

ginal symbol to denote this subsequence) on which the convergence of the functions # .$&,O; 

71 to the function h”(7) (2.17) is uniform. 

Choosing the numbers N, and Nz in such a way that +,[e,; ~12 2yi /3 for N > N, and 

ot (AdIS y, /S for N > N, , we see that hNo(t) 2 y, /3 for N = N VI = mex Uvt , N t ). In accor- 

dance with (2.4), we find that the subsequence of controls u,,,‘(t) converges on the set e, to 

the constant v”. 

It follows from this that the weak limit u”(t) is also equal to v” on the set e, . Reasoning 

in this way for each k > j , we see that u”(t) = v” on each of the corresponding sets ek. Fur- 

ther, recalling that e = Ue, , we find that a’@) = YO if ho(t) > 0. Similarly, we can show 

that u*(t)= --v” - If ho(t) < 0. Thus, we conclude that u”(t) = V* sign ho(t) if ho(t) f 0 and 

that u O(t) is the weak limit of the subsequence of functions uNo(t) if h O(t) P 0. 
The above implies that the optimal control u*(t) satisfies the following maximum relation: 

ho (I) u* (1) = max,h” (1) u (t) for vrai nmxr 1 u (0 I< va (2.22) 

Expression (2.22) for Problem 1 is analogous to the f’ontriagiti maximum principle and is 

similar to the necessary conditions of optimality of the control so obtained for problems of 

this type in ES]. 

We note, however, that the limiting process under consideration establishes the exis- 

tence of the solution of the problem, provides additional condition (2.21) which defines the 

function h*(t), and yields the value of Y’ which serves as an estimate of the optimal cen- 

tral u”. Finally (and this is the most important result of our investigation), the limiting pr+ 

cess enables us to find the optimal control in those time intervals where ho(t) I 0, 
In fact, Condition (2.22) does not tell us how to choose the control u”ftf when ho(t) P 0. 
We noted above that the optimal control u’(t) can be sought in this case as the weak 

limit of a subsequence of functions s,,,‘(t). 
However, actual computation of u’(t) by this method is made difficult by the fact that 

the control uNoft) * t tn ime intervals when h O(t) = 0 takes the form of discontinuous controls 

with the number of s.witchings increasing as N + 0~. This leads to a so-called “sliding 

state” in system (1.1). In’ order to circumvent this difficult at least partially, let us consi- 

der the following method of constructing aok) in time intervals when h O(t) za 0. Let t be m 

arbitrary point in one such interval, and let us consider the functions 

it: (f) =Jz I& (1) = lim L a UK (f + O)d4 
.iV~+o e s 

(2.23) 

Functions (2.23) are continuous 121. Th e 
that the subsequence (uNo$ f 

essence of operation (2.23) lies in the fact 

by the sequence (u,~O) (Ek 

o generally discontinuous controls uNo (2.4) is replaced here 

+ 0 as k + 00 ) average (continuous) controls u .O (2.231, so that 
we can speak of a weak limit of {rr$(t) 1 w IC we shall call the “regulaG;ed optimal con- h’ h 
trol”. We shall merely verify here that {u,.‘(t) ] yields the same trajectory as the control 

. . 
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am(c). Conetracting the differencea 1 X# [t ; u,] ‘- X, [t , Y “11 and recalling the weak conver- 

mea of ( uNoI to u”, we obtain 

Thus, we find that the condition 

liiO”, [I, u:] = 2s [f, q (#=;I,._.,“) 

is fulfilled for all to 2 t s 2’. 

The foregoing is summarized by the following. 

Theorem. The control u’(t) obtained es the week or regularized limit of the optimal 

controls uN o in Problems 1, ia optimal for Problem 1. It satisfies maximum principle (2.22) 

where the minimal function ho(t) and the number v” are the solution of arbitrary extremum 

problem (2.211, which is the limiting case of problem (2.6), (2.7). In those intervals where 

ho 0) ti 0 the control u’(t) = v” sign h’(t). In those intervals where ho(t) E 0 the control 

u”(t) can be found by taking the regularized limit of-the continuous functions u,?(t) (2.23) 

es & + 0. 
In the same way we can solve the problem of time-optimal operation with specified res- 

trictions on the control (XL] 5 V) and on the phase coordinates (1.2). The difference lies 
in the fact that in problems (2.61, (2.7) and (2.21) th e unknown is the time T, while the con- 

stant v is given (+I. 
Notes. 1. Eqs. (2.23) represent just one of the methods of constructing the control 

u’(t) for ho(t) P 0. Other methods of constructing cr”(t) in such cases will be investigated 
in a later paper. 

‘2. The above arguments remain valid for Problem 1 with norms x[u] of forms other then 
x[u] = vrai maxt( u (I) 
positive functional x 1 

. 
u] 

They can be generalized automatically for the case of a convex 

and for e nonsteady-state System (1.1) with the vector control U. 

3. The above approach to the solution of Problem 1 also covers problems on the minimum 

in a given time interval t,, -< tl T of the maximal deviation of the phase coordinates of Sys- 

tem (1.1) under the specified restriction X[U]I V. 

As an elementary example (which nevertheless affords a clear notion of all the basic 

operations et the basis of the described method, end which can readily be solved on the 

basis of simple mechanical considerations), let us consider the motion x” = u of a material 

point which must be transferred by means of the force u (IuII 1) in the minimal time T from 

the position Ix (0) = 0, x ‘(0) = 0 1 to the position ( 1c (T) = 1. x’(T) = 01 under the restriction 

1 x’(t)\ 5 f(t) = t/2. Problem (2.21) reduces to that of finding 

l ) A articular cese of this problem (without discussion of the case h O(t) a 0) is considered 
in 61. P 
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for 
T 

Ll*+l.,*+-) l(t)dt=r, 
5+2)r6 

llV)lbr* r = 3 
0 

(The arguments in the first half of the present paper remain valid even if the restrictions 

in (2.7) are not unitary.) 
Solation of this problem yields the values 

G =i, A;= - )/g/3, T=)/$ 

l'(i)= - 1 for O<r<2 )/g/3, P(f)EO for 2 )/5/3<t< vg 

From (2.17) we find that 

h’(C)zO for O<l<2 )/g/3, ho (L) = - t+2 093 for 2 I/e/3<r< JQJ 

According to our Theorem, u’(t) = - 1 for 2@3j t 5 6. We construct the functions 

up(t) (2.23) fpr determining u’(t) for 0s t < 2&/3. To this end, solving Problem 1, with 

the interval A,t = 20/3N, we find that when 0 -< t S 26/3, 

U0 (f) = i for I+ < t < q;-; A,t a/t 

u” (1) = 1 for $__t f 3A,t / 4 6 t < ti + A,1 

(As we see. the controls UN’(t) produce a “sliding state”.) The regnlarixed functions UP(~) 

(2.23) are of the form up= l/2 (05 t < 2fi/3 - e) and yield the reglarized sequence 

III “1 of controls which converges (already in the usual sense in oar example) to the fan&ion 

u”(t) = l/2. which is the weak limit of the quantities u ,,,O(t). Finally, 

u”(t)=l/I for O<r<2fi/3 

and U’ (t) = - I for 2fl/3<r61/K 

The problem considered in the present paper was formulated in N.N. Ktasovskii’s sem- 

inar at Ural University. The authors are grateful to Prof. Krasovskii for his valnable saggee- 
lions. 
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